
Time To Market
As A Competitive
Advantage

October 2015

here’s no doubt that embedded system
development is getting tougher all the time. In
the latest UBM Tech Electronics Embedded

Market Survey, 61% of total resources was spent
on software. Meeting the delivery schedule is harder, too –
only 38% of projects finished on or ahead of schedule, a tick
downwards from the 42% - 44% of previous years.

T

“61% of total resources was spent on software.
Meeting the delivery schedule is harder, too –
only 38% of projects finished on or ahead of
schedule, a tick downwards from the
42% - 44% of previous years.”

What’s responsible for these schedule delays? Figure 1 tells the
story: the main issues were debugging, test & integration, and
code complexity. The top technology challenges were integrating
new technology and code complexity (again).

Whatever the cause, missing the schedule increases Time To
Market (TTM). And the consequences can be measured in lost
revenue, reduced customer satisfaction, or financial penalties.

On the other hand, curing these software headaches - when
your competitors can’t – gives you a TTM advantage. And that
leads to nothing but good things, especially in the competitive
IoT market.

 Let’s take a look at some of these TTM issues and how they
might be solved.

TTM Challenges: code complexity & debugging
According to a VDC survey of developers in 2014, the size of
the embedded code base is increasing at roughly three times

the rate of the number of embedded software developers being
hired. When combined with tightening schedules, that’s leading
to increasing software complexity and use of third party software
from both open-source and proprietary providers.

The result can be an uneasy blend of software from diverse
sources: a company’s own source and object code, externally-
obtained binary executables, legacy code that may be out of
date, purchased software IP, and miscellaneous other blocks
of software, increasing the likelihood of low software quality,
questionable reliability, and security holes that can be exploited.

As the code size grows, so do the errors: some studies estimate
that every thousand lines of code produced by commercial
software developers result in 20 to 30 bugs on average. As the
code progresses through the development cycle, defects found
become exponentially more expensive to fix - according to a
2007 Forrester report, it’s at least 30 times more costly to fix
software in the field versus during development.

October 2015Time To Market As A Competitive Advantage
 2

Microcontroller Project Trends

Figure 1: Software is a major contributor to increasing TTM (Source: 2014 UBM Tech Embedded Market Study)

Software Increasing Time to Market:

 3
October 2015Time To Market As A Competitive Advantage

How to reduce TTM errors
How can you reduce the incidence of errors? Research by Barry
Boehm and his team at USC gives some guidelines, including:

• Statistically, about 80% of the defects come
from about 20% of the modules (yes,
that 80/20 rule again!), so identifying
the characteristics of error-prone
modules is time well spent.

• Peer reviews are an invaluable
tool, catching up to 60% of
defects.

• Disciplined personal practices
can reduce defect introduction rates by up to 75
percent. One example is Cleanroom Software
Engineering, originally
developed Harlan Mills at
IBM, which includes software
development using formal
methods, and implementation
under SQL techniques.

• All other things being equal, it costs 50 percent more
per source instruction to develop high-dependability

software products than to develop
low-dependability software
products. However, the investment
is more than worth it if the project
involves significant operations and
maintenance costs.

How about tools – apart from the ever-
popular debugger, of course? Static program analysis using an
automated tool can find errors by examining the source code

- without actually executing the program. The analysis can take
place at different levels: for example, within a specific program
or between programs. Analysis of binary executables is much
more difficult, but specialized tools are available that will check
for such security vulnerabilities as buffer overruns and command
injections.

TTM Challenges: integration of new
technology
One of the issues with any new technology is that it tends to be
more complicated that whatever came before. Security is a good
example. Many systems that are now connected to the cloud
were never designed with security in mind: an HP study found
70 percent of IoT devices to be vulnerable to security attacks,
including webcams and home security alarms, with 80 percent of
such devices lacking passwords of sufficient complexity.

Given the current situation, highlighted by some well-publicized
scare stories, security is a top priority for IoT-enabled embedded
systems: according to researcher Markets & Markets, the IoT
security market is expected to grow from USD $6.89 billion in
2015 to USD $28.90 billion by 2020, at a Compound Annual
Growth Rate (CAGR) of 33.2% from 2015 to 2020.
For the embedded systems designer, IoT security must be
tackled on multiple levels:

• Protecting Communication: requires encryption
and authentication for devices to know whether or
not they can trust a remote system.

• Protecting Devices: requires both code signing,
to be sure all code is authorized to run, and run-
time protection, to be sure malicious attacks don’t
overwrite code after it’s loaded.

• Managing Devices: requires the capability
to remotely update code to fix vulnerabilities
discovered after the device has shipped.

• System-Level Protection: an IoT analytics
capability that detects and flags network anomalies
that might be malicious.

According to a VDC survey of
developers in 2014, the size of the
embedded code base is increasing
at roughly three times the rate of

the number of embedded software
developers being hired

An HP study found 70 percent of IoT
devices to be vulnerable to

security attacks

September 2015Time To Market As A Competitive Advantage
 4

Integrating security into an embedded design is therefore a
complex job: software security controls need to be introduced at
the OS level, take advantage of any microcontroller hardware
security features, and extend up through the device stack.

How can you ease the pain? Look for an integrated set of
modules which includes security features such as a TLS1.2/SSL
library, IPsec via IPv6, a cryptographic library and secure vault.
Make sure you select a robust RTOS as well as microcontroller
with hardware features such secure key storage, a random
number generator, and an AES encryption engine.

TTM Challenges: knowledge transfer &
training
Another problem inherent in software complexity is a human
one: how to make sure that the whole team is familiar with all
of the new code – its advantages and pitfalls, etc. Transferring
knowledge between team members is critical so that past work
- and past mistakes - are not repeated. This is made doubly
difficult in a large corporation, where team members may be
spread across the globe.

Bringing new team members up to speed isn’t an easy task,
especially if the project is already under time pressure. A
famous observation known as Brooks’ Law makes the bold
claim that “adding manpower to a late software project makes it
later”, because the time required for new programmers to learn
about the project and the increased communication overhead
will consume an ever increasing quantity of the calendar time
available; eventually the effect becomes negative and every
extra person delays the project further.

To reduce issues related to knowledge transfer, it’s important to
have consistent coding standards, excellent documentation, and
a software framework with state-of-the-art help tools such as
context-sensitive smart manuals.

TTM Challenges: software quality
One way to view complexity is as a measure of the interactions
of various elements of the software. According to an Intel study
presented at the QA&Test 2014 conference, software complexity
is a direct indicator of software quality and costs: if the
complexity for any code is high, the quality of that code will be
lower and it will cost more to manage it. Among the issues are:

• Higher risk of defects
• Difficult to add new functionality
• Difficult to understand/maintain the code
• Difficult to validate

Figure 2: Software quality factors (source: Agile Software Solutions)

“Adding manpower to a late software
project makes it later.”

– Brooks’ Law, Carnegie Mellon University

Software Quality Factors

5
October 2015Time To Market As A Competitive Advantage

In a fast-paced environment where there’s continual pressure
to add new features, over time the code becomes an unwieldy
aggregation of old and new modules that is increasingly difficult
to maintain. In this case some code refactoring be may required.

How do you know when your code is a good candidate for
refactoring? One indicator is the detection of some symptom in
the source code that may indicate a violation of a fundamental
design principle – the imaginatively-named code smell.
Examples include duplicated code, overly complicated design
patterns, or a class that makes extensive use of the methods of
another class.

One way to keep software quality from slowly degrading over
time is to start with a software platform which has a cohesive
underlying architecture and a set of rigorously-tested modules
that meet software best practices such as SDLC protocols and
applicable quality standards. Examples of these may include:

MISRA C: a set of programming guidelines developed by
the Motor Industry Software Reliability Association (MISRA).
Originally aimed at automotive applications, MISRA-C is now
widely recognized as a leading guideline for C programming in
the development of a broad range of safety-critical applications.

IEC-61508, IEC-62304 and ISO 26262: standards governing
the functional safety of electrical, electronic, and programmable

electronic safety-related medical devices, process control
systems, industrial machinery, automobiles and railway control
systems.

IEEE-730-2014: a set of requirements for initiating, planning,
controlling, and executing the Software Quality Assurance
processes of a software development or maintenance project.

Lessons from other fields
The problems confronting embedded software developers – the
increase in code complexity, integration of new technologies,
etc. - have faced by software professionals in other fields, such
as automotive electronics and aerospace, for many years. These
systems can have millions of lines of code, all of which must
interact and communicate to enable the product to run smoothly.
In some cases, a single minor defect in one line of code can
affect the operation of the entire system, and can delay getting
the product to market, add significantly to development costs,
lead to product recalls, or even cause fatalities.

A modern passenger jet such as a Boeing 787, for example, has
around 6.5 million lines of code, compared to 400,000 lines in
the older Boeing 747. This is dwarfed, though, by the modern
high-end automobile, which contains up to 50 embedded
systems incorporating about 100 million lines of code, a huge
increase compared to the early days – in 1981, GM was getting
by with a “mere” 50,000 lines.

Figure 3: An embedded system development platform (source: Renesas)

September 2015Time To Market As A Competitive Advantage
 6

Large, complex projects such as these demand a much different
approach to development than the simple ground-up method
where one-of-a-kind coding, patchy documentation, limited
code reuse, and ad-hoc quality control has too often been
the order of the day. For large projects – which increasingly
include embedded IoT systems - it’s advantageous to move to
a platform-based development system as illustrated in figure 3.
Platform-based development is a paradigm where the common
elements that form the basis of almost all embedded IoT
systems – the RTOS, security, device drivers, communications
protocols - are identified, developed once, and used many times.
Those components provide the base upon which to develop the
application code – i.e., your value-added, differentiating features.

Projects developed using the features and common modules
included with the platform have a much shorter TTM; a whole
series of projects can be developed with maximum code re-use.
At the base level of the platform, the microcontroller hardware
is scalable to maximize code reuse at both ends of the price/
performance spectrum.

How Synergy Helps You Reduce Time To
Market
The Renesas Synergy Software Platform (SSP) includes
numerous features to help reduce your TTM; it runs on a
scalable family of microcontrollers based around the ARM
Cortex-M4 core and incorporates a full-featured RTOS, a
powerful IDE, and a rich library of standard modules including
memory, connectivity, analog, timing, system and power
management, security and encryption, safety and human
machine interface functions.

You can find out more information at the Synergy site, but some
features are particularly noteworthy in reducing the TTM of IoT
embedded systems, with their unique requirements:

Synergy kits
The SSP includes kits and design examples designed to
shrink the design cycle and shorten TTM. These pre-integrated
hardware and software projects give developers at all stages of
the design process the capability to quickly develop and test the
capabilities of a design and help them begin writing application
code as soon as possible.

There are three types of Synergy kits for general development
around each of the Synergy MCU series devices, and two types
of Synergy design examples to guide developers as they explore
how to implement designs for specific end-products or use
specific technologies with the SSP. Several levels of kits, from
specific Application Kits illustrating particular IoT solutions to
full-on Development Kits, are available based on a developer’s
particular requirements.

Security features
Synergy MCUs include significant new security capabilities in
hardware, where they’re less susceptible to attack. The MCUs
integrate new security-related functions: when each MCU is
manufactured, for example, it’s assigned a unique 128-bit
number which can be used to generate a unique key for each
device.

The high and mid range devices feature hardware accelerators
for both symmetric and asymmetric cryptography (including

Figure 4: Synergy features to reduce TTM

7
October 2015Time To Market As A Competitive Advantage

RSA2048, DLP, ECDLP, and DSA 2048) as well as HASH
(SHA1, SHA224 and SHA256). Each Series S7 and S5
Cortex-M4 MCU also features a true random number generator,
an accelerator for asymmetric key generation and key secure
storage. Series S3 MCUs feature similar security capabilities
with symmetric key generation; S1 Series devices feature a true
random number generator and basic encryption functions such
as AES 128 and 256.

Software Quality
To ensure consistently-high standards, Renesas is responsible
for software functionality and quality. The SSP incorporates an
industry-standard design process and tools, including project
management, configuration management, coding standards and
analysis, test and quality assurance, and continuous integration.

The documentation validating the software package specification
and quality (including all test data) is available for customer
inspection. SSP software from third-party vendors must also
meet the same quality standards under the Synergy Qualified
Software Add-On (QSA) program.

The quality program has four components:

Software Best Practices:

• Renesas SDLC guideline document
• Requirements & Traceability
• Coding Standards
• Design Descriptions
• Code Reviews and Unit Test Development
• Continuous Integration and Integration Reports
• Release Process & Management

Software Data Sheet:

• Published and maintained on Renesas.com website
• Specs and performance metrics tested and

documented
• Includes benchmarks, code size, context switch

times, latencies, execution times, cyclical testing,
fault tolerance and more.

• Basis of SSP

Software Quality Standards:

• MISRA C:2012 – Guidelines for the Use of the C
Language in Critical Systems

• ISO/IEC/IEEE 12207 – Software life cycle processes
• CERT 2nd Edition – C Programming Language

Secure Coding Standard
• Testing artifacts available for process certification -

TUV & UL

Software Quality Assurance:

• Renesas SQA document – Software Quality
Assurance Plan

• Requirements traceability throughout development
• Documented processes
• SQA metrics & process artifacts available to

customers
• Test plans, test suites, reports

Conclusion
The days of low performance, simple MCU-based embedded
designs are long gone. As an embedded system designer, you
have to deliver higher performance, increasingly complex cloud-
connected solutions in a fraction of the time.

To accomplish that task and meet shrinking development
schedules, you need an integrated platform solution that
includes all of the standard embedded system and IoT-specific
building blocks, so you can concentrate on developing value-
added, differentiated application code.

The Renesas Synergy Platform is a prime
example of such a solution, offering
you a powerful way to
cut TTM and gain
a competitive
advantage in
the marketplace.

September
2015

Embedded Development Trends
Obsolete Traditional Design Paradigms 8

Today, companies large and small race to capitalize on the rapidly growing IoT embedded system markets. Design engineers
face many challenges – acquiring and mastering new technologies, developing code for low-level system infrastructure,
performing integration and test, meeting aggressive schedueles – all while facing intense cost and resources pressures. A
solid embedded software platform is the answer to these challenges by freeing resources to develop differentiated products
instead of creating and maintaining the fundamental, yet essential system structure underneath.

Renesas introduces such a platform that is truly complete, fully tested and qualified, and systematically maintained and
supported so you can start your application software development immediately at the API level without worry.

What makes the Renesas
Synergy™ Platform unique?
Unlike other embedded development environments, all
the Renesas Synergy™ Platform elements were designed
from the ground up as a single platform. This provides
unprecedented scalability and compatibility, allowing
developers unparalleled code reuse. The platform will
continue to grow, adding new technologies and features
over time to keep your products on the cutting edge without
new investments. To learn more, please visit:
www.renesassynergy.com

Introducing the Renesas Synergy™ Platform

Synergy
Microcontrollers

Synergy
Tools & Kits

Synergy
Solutions

Synergy
Gallery

Synergy Software

Software APIs

Synergy Software Package (SSP)

BSP

ThreadX®

RTOS

HAL Drivers

FileX®

GUIX™
USBX™
NetX™

NetX Duo™

Functional
Libraries

Application
Framework

Qualified Software
Add-Ons (QSA)

Verified Software
Add-Ons (VSA)

Stacks

Algorithms

Functions

Specialties

…and more

Stacks

Algorithms

Functions

Specialties

…and more

